Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drugs Dermatol ; 22(12): e47-e48, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051834

RESUMO

Calcinosis cutis can occur idiopathically or be associated with injury, metabolic disease, and different rheumatologic diseases such as scleroderma and dermatomyositis. Calcinosis cutis is often treatment-resistant and leads to decreased quality of life and pain. Medical therapies, such as bisphosphonates, warfarin, tetracyclines, calcium channel blockers, colchicine, laser therapy and surgery, lithotripsy, and even stem cell transplantation have been used with varying success.1 Lesions of calcinosis cutis can persist even when systemic disease is adequately controlled leaving the patient with a painful reminder of their underlying disease.


Assuntos
Calcinose Cutânea , Dermatopatias , Humanos , Agulhas/efeitos adversos , Dermatopatias/diagnóstico , Dermatopatias/etiologia
2.
J Drugs Dermatol ; 22(11): 7180, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943265

RESUMO

Calcinosis cutis can occur idiopathically or be associated with injury, metabolic disease, and different rheumatologic diseases such as scleroderma and dermatomyositis.


Assuntos
Calcinose Cutânea , Humanos , Calcinose Cutânea/terapia , Agulhas
3.
Sci Rep ; 13(1): 9825, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330528

RESUMO

Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.


Assuntos
Inflamação , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Humanos , Animais , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740610

RESUMO

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Assuntos
Sistema Nervoso Central/fisiopatologia , Microbioma Gastrointestinal , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Probióticos/administração & dosagem , Remielinização/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
5.
J Immunol ; 203(4): 888-898, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31292217

RESUMO

Genome-wide association studies have mapped the specific sequence variants that predispose for multiple sclerosis (MS). The pathogenic mechanisms that underlie these associations could be leveraged to develop safer and more effective MS treatments but are still poorly understood. In this article, we study the genetic risk variant rs17066096 and the candidate gene that encodes IL-22 binding protein (IL-22BP), an antagonist molecule of the cytokine IL-22. We show that monocytes from carriers of the risk genotype of rs17066096 express more IL-22BP in vitro and cerebrospinal fluid levels of IL-22BP correlate with MS lesion load on magnetic resonance imaging. We confirm the pathogenicity of IL-22BP in both rat and mouse models of MS and go on to suggest a pathogenic mechanism involving lack of IL-22-mediated inhibition of T cell-derived IFN-γ expression. Our results demonstrate a pathogenic role of IL-22BP in three species with a potential mechanism of action involving T cell polarization, suggesting a therapeutic potential of IL-22 in the context of MS.


Assuntos
Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Receptores de Interleucina/genética , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Genótipo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único , Ratos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...